
Eur. Phys. J. B 55, 161–167 (2007)
DOI: 10.1140/epjb/e2006-00205-y THE EUROPEAN

PHYSICAL JOURNAL B

A nonextensive approach to the dynamics of financial observables

S.M.D. Queirós1,a, L.G. Moyano1,b, J. de Souza1,c, and C. Tsallis1,2,d

1 Centro Brasileiro de Pesquisas F́ısicas, Rua Dr. Xavier Sigaud 150, 22290-180, Rio de Janeiro-RJ, Brazil
2 Santa Fe Institute, 1399 Hyde Park Road, Santa Fe, New Mexico 87501, USA

Received 31 January 2006 / Received in final form 22 March 2006
Published online 1st June 2006 – c© EDP Sciences, Società Italiana di Fisica, Springer-Verlag 2006

Abstract. We present results about financial market observables, specifically returns and traded volumes.
They are obtained within the current nonextensive statistical mechanical framework based on the entropy

Sq = k
1−∑W

i=1 p
q
i

1−q
(q ∈ �)

(
S1 ≡ SBG = −k

∑W
i=1 pi ln pi

)
. More precisely, we present stochastic dynamical

mechanisms which mimic probability density functions empirically observed. These mechanisms provide
possible interpretations for the emergence of the entropic indices q in the time evolution of the corresponding
observables. In addition to this, through multi-fractal analysis of return time series, we verify that the dual
relation qstat + qsens = 2 is numerically satisfied, qstat and qsens being associated to the probability
density function and to the sensitivity to initial conditions respectively. This type of simple relation, whose
understanding remains ellusive, has been empirically verified in various other systems.

PACS. 05.90.+m Other topics in statistical physics, thermodynamics, and nonlinear dynamical systems –
05.40.-a Fluctuation phenomena, random processes, noise, and Brownian motion – 89.65.Gh Economics;
econophysics, financial markets, business and management

1 Introduction

In recent years statistical mechanics has enlarged its orig-
inal assignment: the application of statistics to large sys-
tems whose states are governed by some Hamiltonian func-
tional [1]. Its capability for relating microscopic states
of individual constituents of a system to its macroscopic
properties are nowadays used ubiquitously [2]. Certainly,
the most important of these connections is still the deter-
mination of thermodynamic properties through the corre-
spondence between the entropy concept, originally intro-
duced by Rudolf Julius Emmanuel Clausius in 1865 [3],
and the number of allowed microscopic states, introduced
by Ludwig Boltzmann around 1877 when he was study-
ing the approach to equilibrium of an ideal gas [4]. This
connection can be expressed as

S = k ln W, (1)

where k is a positive constant, and W is the number of
microstates compatible with the macroscopic state of an
isolated system. This equation, known as Boltzmann prin-
ciple, is one of the cornerstones of standard statistical me-
chanics.
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When the system is not isolated, but instead in con-
tact to some large reservoir, it is possible to extend
equation (1), under some assumptions, and obtain the
Boltzmann-Gibbs entropy

SBG = −k
W∑

i=1

pi ln pi , (2)

where pi is the probability of the microscopic configura-
tion i [1]. The Boltzmann principle should be derivable
from microscopic dynamics, since it refers to microscopic
states, but the implementation of such calculation has
not been yet achieved. So, Boltzmann-Gibbs (BG) statis-
tical mechanics is still based on hypothesis such as the
molecular chaos [4] and ergodicity [5]. In spite of the
lack of an actual fundamental derivation, BG statistics
has been undoubtedly successful in the treatment of sys-
tems in which short spatio/temporal interactions dom-
inate. For such cases, ergodicity and (quasi-) indepen-
dence are favoured and Khinchin’s approach to SBG is
valid [5]. Therefore, it is entirely feasible that other phys-
ical entropies, in addition to the BG one, can be defined
in order to properly treat anomalous systems, for which
the simplifying hypothesis of ergodicity and/or indepen-
dence are not fulfilled. Examples are: metastable states
in long-range interacting Hamiltonian dynamics, meta-
equilibrium states in small systems (i.e., systems whose
number of particles is much smaller than Avogrado’s num-
ber), glassy systems, some types of dissipative dynamics,
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and other systems that in some way violate ergodicity.
This includes systems with non-Markovian memory (i.e.,
long-range memory), like it seems to be the case of finan-
cial ones. Generically speaking, systems that may have
a multi-fractal, scale-free or hierarchical structure in the
occupancy of their phase space.

Inspired by this kind of systems it was proposed in
1988 the entropy [6]

Sq = k

1 −
W∑

i=1

pq
i

q − 1
(q ∈ �) , (3)

which generalises SBG (limq→1 Sq = SBG), as the basis of
a possible generalisation of BG statistical mechanics [7,9].
The value of the entropic index q for a specific system
is to be determined a priori from microscopic dynamics.
Just like SBG, Sq is nonnegative, concave, experimentally
robust (or Lesche-stable [10]) (∀q > 0), and leads to a finite
entropy production per unit time [2,11]. Moreover, it has
been recently shown [12] that it is also extensive, i.e.,

Sq (A1 + A2 + . . . + AN ) �
N∑

i=1

Sq (Ai) , (4)

for special kinds of correlated systems, more precisely
when the phase-space is occupied in a scale-invariant form.
By being extensive, for an appropriate value of q, Sq com-
plies with Clausius’ concept on macroscopic entropy, and
with thermodynamics.

Since its proposal, entropy (3) has been the source of
several results in both fundamental and applied physics,
as well as in other scientific areas such as biology, chem-
istry, economics, geophysics and medicine [13]. Herein, we
both review and present some new results concerning ap-
plications to the dynamics of financial market observables,
namely the price fluctuations and traded volumes. Specif-
ically, we will introduce stochastic dynamical mechanisms
which are able to reproduce some features of quantities
such as the probability density functions (PDFs) and the
Kramer-Moyal moments. Moreover, we will present some
results concerning the return multi-fractal structure, and
its relation to sensitivity to initial conditions.

Our dynamical proposals will be faced to empirical
analysis of 1 minute returns and traded volumes of the
30 companies that were used to compose the Dow Jones
Industrial Average (DJ30) between the 1st July and the
31st December 2004. In order to eliminate specious be-
haviours we have removed the well-known intra-day pat-
tern following a standard procedure [8]. After that, the
return values were subtracted from its average value and
expressed in standard deviation units, whereas the traded
volumes are expressed in mean traded volume units.

2 Variational principle using the entropy Sq

Before dealing with specific financial problems, let us anal-
yse the probability density function which emerges when
the variational principle is applied to Sq [9].

Let us consider its continuous version, i.e.,

Sq = k
1 − ∫

[p (x)]q dx

1 − q
. (5)

The natural constraints in the maximisation of (5) are
∫

p (x) dx = 1 , (6)

corresponding to normalisation, and

∫

x
[p (x)]q

∫
[p (x)]q dx

dx ≡ 〈x〉q = µ̄q , (7)

∫

(x − µ̄q)
2 [p (x)]q

∫
[p (x)]q dx

dx ≡
〈
(x − µ̄q)

2
〉

q
= σ̄2

q , (8)

corresponding to the generalised mean and variance of x,
respectively [9].

From the variational problem using (5) under the
above constraints, we obtain

p (x) = Aq

[
1 + (q − 1)Bq (x − µ̄q)

2
] 1

1−q

, (q < 3) ,

(9)
where,

Aq =

⎧
⎪⎨

⎪⎩

Γ [ 5−3q
2−2q ]

Γ [ 2−q
1−q ]

√
1−q

π Bq ⇐ q < 1

Γ [ 1
q−1 ]

Γ [ 3−q
2q−2 ]

√
q−1

π Bq ⇐ q > 1
, (10)

and
Bq =

[
(3 − q) σ̄2

q

]−1
. (11)

Standard and generalised variances, σ̄2 and σ̄2
q respec-

tively, are related by

σ̄2
q = σ̄2 5 − 3q

3 − q
. (12)

Defining the q-exponential function as

ex
q ≡ [1 + (1 − q) x]

1
1−q (ex

1 ≡ ex) , (13)

(ex
q = 0 if 1 + (1 − q)x ≤ 0) we can rewrite PDF (9) as

p (x) = Aq e−Bq(x−µ̄q)2

q , (14)

hereafter referred to as q-Gaussian.
For q = 3+m

1+m , the q-Gaussian form recovers the Stu-
dent’s t-distribution with m degrees of freedom (m = 1,
2, 3,. . .) with finite moment up to order mth. So, for q > 1,
PDF (14) presents an asymptotic power-law behaviour.
On the other hand, if q = n−4

n−2 with n = 3, 4, 5, . . ., p (x)
recovers the r-distribution with n degrees of freedom. Con-
sistently, for q < 1, p (x) has a compact support which is

defined by the condition |x − µ̄q| ≤
√

3−q
1−q σ̄2

q .
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3 Application to macroscopic observables

3.1 Model for price changes

The Gaussian distribution, recovered in the limit q → 1
of expression (14), can be derived from various stand-
points. Besides the variational principle, it has been de-
rived, through dynamical arguments, by Bachelier in his
1900 work on price changes in Paris stock market [14],
and also by Einstein in his 1905 article on Brownian mo-
tion [15]. In particular, starting from a Langevin dynam-
ics, we are able to write the corresponding Fokker-Planck
equation and, from it, to obtain as solution the Gaussian
distribution. Analogously, it is also possible, from certain
classes of stochastic differential equations and their asso-
ciated Fokker-Planck equations, to obtain the distribution
given by equation (14).

In this section, we will discuss a dynamical mechanism
for returns, r, which is based on a Langevin-like equation
that leads to a PDF (q-Gaussian) with asymptotic power-
law behaviour [16,17]. This equation is expressed as

dr = −k r dt +
√

θ [p (r, t)](1−q)
dWt (q ≥ 1) , (15)

(in Itô convention) where Wt is a regular Wiener process
generated from uncorrelated noises associated to a Gaus-
sian with zero mean and unitary variance, and p(r, t) is
the instantaneous return PDF. In a return context the
deterministic term of equation (15) intends to represent
internal mechanisms which tend to keep the market in
some average return or, in a analogous interpretation, can
be related to the eternal competition between speculative
price and the actual worth of a company. In our case, we
use the simplest approach and write it as a restoring force,
with a constant k, similar to the viscous force in the reg-
ular Langevin equation. In regard to the stochastic term,
it aims to reproduce the microscopic response of the sys-
tem to the return: θ is the volatility constant (intimately
associated to the variance of p(r, t)) and q, the nonexten-
sive index, reflects the magnitude of that response. Since
the largest instabilities in the market are introduced by
the most unexpected return values, it is plausible that the
stochastic term in equation (15) can have such inverse de-
pendence on the PDF p(r, t).

The associated Fokker-Planck equation to equa-
tion (15) is given by

∂p(r, t)
∂t

=
∂

∂r
[k r p(r, t)]+

1
2

∂2

∂r2

{
θ [p (r, t)](2−q)

}
, (16)

and the long-term probability density function
is [16,18,19],

p (r) =
1
Z

[
1 − (1 − q)β r2

] 1
1−q ,

or, specifically,

p (r) =
1
Z

[

1 − (1 − q)
k r2

(2 − q) Zq−1 θ

] 1
1−q

. (17)

One of the most interesting features of equation (15) is its
aptitude to reproduce the celebrated U-shape of the 2nd
(i.e., n = 2) Kramers-Moyal moment

Mn (r, t, τ) =
∫

(r′ − r)n
P (r′, t + τ |r, t) dr′ ≈ τ θ [p (r, t)](1−q) .

(18)

It is this fact which allowed the establishment of analo-
gies (currently used in financial mimicry) between finan-
cial markets dynamics and fluid turbulence [20].

It is noteworthy that equation (15) is statistically
equivalent to

dr = −k r dt +
√

θ [f (t)]
q−1
2 dWt

+
√

(q − 1) θ β (t0)Z (t0) [f (t)]−
1
2 r (t) dW ′

t (19)

where

cccf(t) = {exp [−k (3 − q) t] + (2 − q)

× (1 − exp [−k (3 − q) t]) [Z (t0)]
q−1 β (t0) θ

k

} 1
3−q

i.e., a stochastic differential equation with independent ad-
ditive and multiplicative noises [18,21]. If equation (15)
allows an immediate heuristic relation between q and the
response of the system to its own dynamics, equation (3.1)
permits a straightforward dynamical relation between q
and the magnitude of multiplicative noise in such a way
that, for q = 1, the Ornstein-Uhlembeck process is recov-
ered as well as the Gaussian distribution.

In Figure 1 we present the typical PDF for the 1 min
returns of a company constituent of the Dow Jones Indus-
trial Average 30 (upper panel) presenting q = 1.31 ± 0.02,
a time series generated by equation (15) (middle panel),
and the U-shaped 2nd Kramers-Moyal moment for our
data (lower panel) where r(t0 = −∞) = 0. As it can
be seen the accordance using the simplest approach is al-
ready quite nice. Upgrades of this model can be obtained
by taking into account the risk-aversion effects, which in-
duce asymmetry on the PDF, and correlations on the
volatility in a way which differs from others previously
proposed. The formulation presented herein has also the
advantage of being applicable to systems which are not
in a stationary state since the time-dependent solutions
of the Fokker-Planck equation are of the q-Gaussian type
as well. Last of all, we verify that the value obtained for
k = 2.40 ± 0.04 min−1 is in agreement with the efficient
market hypothesis.

3.2 Model for traded volumes

Changes in the price of a certain equity are naturally de-
pendent on transactions of that equity and thus on its
traded volume, v. Previous studies proved the asymptotic
power-law behaviour of traded volume PDF [22], later ex-
tended for all values of v [23]. In this case it was shown
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Fig. 1. Upper panel: probability density function vs. r. Sym-
bols correspond to an average over the 30 equities used to
built DJ30 and the line represents the PDF obtained from
a time series generated by equation (15) (following the the
procedure presented in Ref. [18]) which is presented on mid-
dle panel. Lower panel: 2nd Kramers-Moyal moment M2 ≈
τ θ [p (r)](1−q) = τ k

2−q

[
(5 − 3 q)σ2 + (q − 1) r2

]
from which

k parameter is obtained and where the stationary hypothe-
sis is assumed (t0 = −∞ � −k−1 � 0). Parameter val-
ues: τ = 1min, k = 2.40 ± 0.04, σ = 0.930 ± 0.08 and
q = 1.31 ± 0.02. The points have been obtained from real
data and the time scale is absolute.

Fig. 2. Symbols represent the average correlation function for
the 30 time series analysed and the line represents a double ex-
ponential fit with characteristic times of T1 = 27 and T2 = 844
yielding a ratio about 32 between the two time scales equa-
tion (23) (R2 = 0.981, χ2 = 2× 10−5, and time is expressed in
minutes).

that the traded volume PDF is very well described by the
following ansatz distribution

P (v) =
1
Z

(
v

ϕ

)ρ

expq

(

− v

ϕ

)

, (20)

where v represents the traded volume expressed in its
mean value unit 〈V 〉, i.e., v = V/〈V 〉, ρ and ϕ are pa-

rameters, and Z =
∫ ∞
0

(
v
ϕ

)ρ

expq

(
− v

ϕ

)
dv.

The probability density function (20) was recently ob-
tained from a mesoscopic dynamical scenario [24] based
in the following multiplicative noise stochastic differential
equation

dv = −γ(v − ω

α
) dt +

√

2
γ

α
v dWt , (21)

where Wt is a regular Wiener process following a normal
distribution, and v ≥ 0. The right-hand side terms of equa-
tion (21) represent inherent mechanisms of the system in
order to keep v close to some “normal” value, ω/α, and to
mimic microscopic effects on the evolution of v, like a mul-
tiplicative noise commonly used in intermittent processes
[25]. This dynamics, and the corresponding Fokker-Planck
equation [18], lead to the following inverted Gamma sta-
tionary distribution:

f (v) =
1

ω Γ [α + 1]

( v

ω

)−α−2

exp
[
− ω

v

]
. (22)

Consider now, that instead of being a constant, ω is a time
dependent quantity which evolves on a time scale T larger
than the time scale of order γ−1 required by equation (21)
to reach stationarity [26,27]. This time dependence is, in
the present model, associated to changes in the volume of
activity (number of traders that performed transactions)
and empirically justified through the analysis of the self-
correlation function for returns. In Figure 2 we have veri-
fied that the correlation function is very well described by

C [v (t) , v (t + τ)] = C1 e−τ/T1 + C2 e−τ/T2 (23)
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Fig. 3. Upper panel: excerpt of the time series generated
by our dynamical mechanism (simulation) to replicate 1 min
traded volume of Citigroup stocks at NYSE (data). Lower
panel: 1 min traded volume of Citigroup stocks probability
density function vs. traded volume. Symbols are for data, and
solid line for the replica. Parameter values: θ = 0.212 ± 0.003,
ρ = 1.35 ± 0.02, and q = 1.15 ± 0.02 (χ2 = 3.6 × 10−4,
R2 = 0.994).

with T2 = 844 ± 7 � T1 = 27. In other words, there
is first a fast decay of C [v (t) , v (t + τ)], related to local
equilibrium, and then a much slower decay for larger τ .
This constitutes a necessary condition for the application
of a superstatistical model [26].

If we assume that ω follows a Gamma PDF, i.e.,

P (ω) =
1

λΓ [δ]

(ω

λ

)δ−1

exp
[
−ω

λ

]
, (24)

then, the long-term distribution of v will be given by
p (v) =

∫
f (v) P (ω) dω. This results in

p (v) =
1
Z

(v

θ

)−α−2

expq

[

−θ

v

]

, (25)

where λ = θ (q − 1), δ = 1
q−1 − α − 1. Bearing in mind

that, for q > 1,

xae
−x

b
q =

[
b

q − 1

] 1
q−1

xa− 1
q−1 e

− b/(q−1)2

x
q , (26)

Fig. 4. Multi-fractal spectrum f (h) vs. h for 1 min return
averaged over the 30 equities with hmin = 0.28 ± 0.04 and
hmax = 0.83 ± 0.04.

we can redefine our parameters and obtain the q-Gamma
PDF (20).

In Figure 3 we present a comparison between the
traded volume of Citigroup (2004 world’s number one
company [28]) stocks, as well as a replica of that time
series obtained using this dynamical proposal. As it can
be easily verified, the agreement is remarkable.

4 The nonextensive q-triplet and financial
observables

Systems characterised by Boltzmann-Gibbs statistical me-
chanics present the following characteristics: (i) their PDF
for energies is proportional to an exponential function in
the presence of a thermostat; (ii) they have strong sen-
sitivity to the initial conditions, i.e., this quantity in-
creases exponentially with time (currently referred to as
strong chaos), being characterised by a positive maximum
Lyapunov exponent; (iii) they typically present, for basic
macroscopic quantities, an exponential decay with some
relaxation time. In other words, these three behaviours
exhibit exponential functions (i.e., q = 1). Analogously,
it was recently conjectured [29] that, for systems which
can be studied within nonextensive statistical mechan-
ics, the energy probability density function (associated to
stationarity or (meta) equilibrium), the sensitivity to the
initial conditions, and the relaxation would be described
by three entropic indices qstat, qsens, and qrel, referred to
as the q-triplet . The first physical corroboration of such
scenario has been made from the analysis of two sets of
daily averages of the magnetic field strength observed by
Voyager 1 in the solar wind [30]. Others systems are cur-
rently on study (e.g., [31]). Of course, if the system is
non Hamiltonian, it has no energy distribution, hence qstat

cannot defined in this manner. We may however estimate
it through a stationary state generalised Gaussian (which
would generalise the Maxwellian distribution of velocities
for a BG system in thermal equilibrium). In contrast, the
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other two indices, qsens and qrel, remain defined in the
usual way.

Let us focus now on the multi-fractal structure of re-
turn time series. It has been first conjectured, and later
proved, for a variety of nonextensive one-dimensional sys-
tems, that the following relation holds [32]:

1
1 − qsens

=
1

hmin
− 1

hmax
, (27)

where hmin and hmax are respectively the minimal and
maximal h-values of the associated multifractal spec-
trum f(h). In Figure 4 we depict the multifractal spec-
trum of 1 min traded volumes, obtained by the ap-
plication of the MF-DFA5 method [33]; h and f (h)
have been obtained from averages of the empirical
data of 30 companies. Through this analysis, we have
determined hmin = 0.28 ± 0.04 and hmax = 0.83 ± 0.04.
The use of equation (27) yields qsens = 0.58 ± 0.10.
Considering that the q value obtained for the return prob-
ability density function was qstat = 1.31 ± 0.02, we verify
that the dual relation

qstat + qsens = 2 (28)

is approximately satisfied within the error intervals. Tak-
ing into account the well-known fast decay of return self-
correlations, we see that the price changes for a typical
DJ30 stock may be essentially described by the q-triplet
{qsen, qstat, qrel} = {0.58 ± 0.10, 1.31± 0.02, 1}.

5 Final remarks

In this article we have presented a nonextensive statisti-
cal mechanics approach to the dynamics of financial mar-
kets observables, specifically the return and the traded
volume. With this approach we have been able to present
mesoscopic dynamical interpretations for the emergence
of the entropic index q frequently obtained by a numeri-
cal adjustment for data PDF of equations (17) and (20).
For the case of returns, q is related to the reaction de-
gree of the agents on the market to fluctuations of the
observable, while for the case of traded volume it is as-
sociated to fluctuations on the (local) average traded vol-
ume. Along with these dynamical scenarios, and based
on the multi-fractal nature of returns, we have verified
that this quantity appears to approximatively satisfy the
dual relation, qstat + qsens = 2, previously conjectured
within the emergence of the q-triplet which characterises
the stationary state, the sensitivity to initial conditions,
and the relaxation for nonextensive systems. The com-
plete understanding of these connections remains ellusive.
For instance, concerning relaxation and the q-triplet con-
jecture, a new question arise for price changes. It is well-
known that the self-correlation for returns is of exponen-
tial kind, in contrast with the long-lasting correlations for
the volatility (or returns magnitude) [34]. So, if the effi-
cient market hypothesis is considered the key element in
financial markets, then it makes sense to assume qrel = 1.

Nonetheless, it is known that such fast decay of the corre-
lation thwarts the implementation of arbitrage due to high
transaction costs [35]. In this way, arbitrage must be re-
lated to non-trivial effects which can be quantified by the
volatility self-correlation function. Several empirical stud-
ies have shown that this function presents a asymptotic
power-law decay with tail exponents about 0.2. This de-
cay is well-matched with a qrel-exponential with qrel � 6.
In other words, if arbitrage on markets is considered as
the fundamental feature instead, then the essential relax-
ation to be taken into account might be the one related
to the volatility, for which qrel > 1. Progress is clearly
still needed, at both the fundamental and applied levels,
in order to achieve a deep understanding of this complex
system.
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